Phương pháp giải phương trình vô tỉ lớp 9 là tài liệu hữu ích, tổng hợp 34 trang, tuyển tập toàn bộ kiến thức lý thuyết về phương pháp, bài tập phương trình vô tỉ có đáp án chi tiết kèm theo.
Chuyên đề phương trình vô tỉ được biên soạn khoa học, phù hợp với mọi đối tượng học sinh có học lực từ trung bình, khá đến giỏi. Với mỗi phương pháp giải lại bao gồm nhiều dạng bài tập tổng hợp với nhiều câu hỏi thường xuyên xuất hiện trong các đề thi. Qua đó giúp học sinh củng cố, nắm vững chắc kiến thức nền tảng và luyện giải đề để học tốt Toán 9. Nội dung chi tiết tài liệu, mời các bạn cùng theo dõi tại đây.
I. Phương pháp 1: Nâng lũy thừa
A. Lí thuyết
B. Bài tập
Bài 1: Giải phương trình:
Bài 2: Giải phương trình:
Bài 3: Giải phương trình:
Bài 4: Giải phương trình:
HD: ĐK:
Kết hợp (1) và (2) ta được:
Bài 5. Giải phương trình :
HD:Đk: khi đó pt đã cho tương đương:
Bài 6. Giải phương trình sau :
HD:Đk: phương trình tương đương :
Bài 7. Giải phương trình sau :
HD:
Bài 8. Giải và biện luận phương trình:
………..
II. Phương pháp 2: Đưa về phương trình tuyệt đối
A,. Kiến thức
Sử dụng hằng đẳng thức sau
B. Bài tập
Bài 1: Giải phương trình:
– Nếu x<2:(1) 2-x=8-x (vô nghiệm)
– Nếu
Bài 2: Giải phương trình
Đặt phương trình left({ }^{*}right) đã cho trở thành:
– Nếu
– Nếu
– Nếu (vô nghiệm)
Với (thoả mãn)
Vậy:
Bài 3: Giải phương trình:
Vậy: x=15
Bài 4: Giải phương trình:
HD:ĐK:
Nếu
Nếu
Vậy tập nghiệm của phương trình là:
…………………
III. Phương pháp 3: Đặt ẩn phụ
1. Phương pháp đặt ẩn phụ thông thường
Đối với nhiều phương trình vô vô tỉ, để giải chúng ta có thể đặt t=f(x) và chú ý điều kiện của t nếu phương trình ban đầu trở thành phương trình chứa một biến t quan trọng hơn ta có thể giải được phương trình đó theo t thì việc đặt phụ xem như “hoàn toàn”.
Bài 1. Giải phương trình:
HD: Điều kiện:
Nhận xét.
Đặt thì phương trình có dạng: . Thay vào tìm được x=1
Bài 2. Giải phương trình:
HD: Điều kiện:
Đăt thì . Thay vào ta có phương trình sau:
Ta tìm được bốn nghiệm là:
Do nên chỉ nhận các giá trị
Từ đó tìm được các nghiệm của phương trình 1 :
Cách khác: Ta có thể bình phương hai vế của phương trình với điều kiện
Ta được: , từ đó ta tìm được nghiệm tương ứng.
Đơn giản nhất là ta đặt : và đưa về hệ đối xứng (Xem phần đặt ẩn phụ đưa về hệ)
Bài 3. Giải phương trình sau:
HD: Điều kiện:
Đặt thì phương trình trở thành:
Từ đó ta tìm được các giá trị của
Bài 4. Giải phương trình sau :
HD:
Đặt thì phương trình trở thành:
Bài 5. Giải phương trình sau :
HD:Điều kiện:
Chia cả hai vế cho x ta nhận được :. Đặt , ta giải được.
Bài 6. Giải phương trình :
HD: x=0 không phải là nghiệm, Chia cả hai vế cho x ta được:
Đặt , Ta có :
Bài 7. Giải phương trình:
HD: Đặt
Phương trình có dạng:
……………
Mời các bạn tải File tài liệu để xem thêm nội dung chi tiết
Cảm ơn bạn đã theo dõi bài viết Một số phương pháp giải phương trình vô tỉ lớp 9 Ôn thi học sinh giỏi môn Toán lớp 9 của Neu-edutop.edu.vn nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.