Giải Toán 9 Bài 2: Giải hệ hai phương trình bậc nhất hai ẩn là tài liệu vô cùng hữu ích giúp các em học sinh lớp 9 có thêm nhiều gợi ý tham khảo để giải các bài tập trong SGK Toán 9 Kết nối tri thức với cuộc sống tập 1 trang 11, 12, 13, 14, 15, 16.
Giải bài tập Toán 9 Kết nối tri thức tập 1 trang 11 → 16 được trình bày rõ ràng, cẩn thận, dễ hiểu nhằm giúp học sinh nhanh chóng biết cách làm bài. Đồng thời, cũng là tài liệu hữu ích giúp giáo viên thuận tiện trong việc hướng dẫn học sinh ôn tập Bài 2 Chương I: Phương trình và hệ hai phương trình bậc nhất hai ẩn. Mời thầy cô và các em theo dõi bài viết dưới đây của Neu-edutop.edu.vn:
Giải Toán 9 Kết nối tri thức Tập 1 trang 16
Bài 1.6
Giải các hệ phương trình sau bằng phương pháp thế:
Lời giải:
Từ phương trình đầu ta có thế vào phương trình thứ hai ta được suy ra nên Thế vào phương trình đầu ta có
Vậy nghiệm của hệ phương trình là
Từ phương trình thứ hai ta có thế vào phương trình đầu ta được suy ra nên Thế vào phương trình thứ hai ta có
Vậy nghiệm của hệ phương trình là
Từ phương trình thứ hai ta có thế vào phương trình đầu ta được suy ra hay (vô lí) . Phương trình này không có giá trị nào của y thỏa mãn.
Vậy hệ phương trình vô nghiệm.
Bài 1.7
Giải các hệ phương trình sau bằng phương pháp cộng đại số;
Lời giải:
Cộng từng vế của hai phương trình ta có nên suy ra
Thế vào phương trình thứ nhất ta được nên suy ra
Vậy nghiệm của hệ phương trình là .
Nhân cả hai vế của phương trình thứ nhất với 3 ta được vậy hệ đã cho trở thành
Trừ từng vế của hai phương trình ta có nên suy ra
Thế vào phương trình thứ hai ta được nên suy ra
Vậy nghiệm của hệ phương trình là .
Nhân cả hai vế của phương trình thứ nhất với ta được nhân cả hai vế của phương trình thứ hai với ta được
Vậy hệ đã cho trở thành
Cộng từng vế của hai phương trình ta có nên (luôn đúng) .
Ta thấy phương trình luôn đúng với x tùy ý và y tùy ý. Với giá trị tùy ý của y, giá trị của x được tính bởi phương trình suy ra nên hệ phương trình đã cho có nghiệm với .
Bài 1.8
Cho hệ phương trình , trong đó m là số đã cho. Giải hệ phương trình trong mỗi trường hợp sau:
a)
b)
c)
Lời giải:
a) Thay vào hệ phương trình đã cho ta được
Nhân cả hai vế của phương trình thứ nhất với 4, ta được nên hệ phương trình đã cho trở thành
Cộng từng vế của hai phương trình ta có nên suy ra Thế vào phương trình ta được suy ra
Vậy nghiệm của hệ phương trình là
b) Thay vào hệ phương trình đã cho ta được
Nhân cả hai vế của phương trình thứ hai với , ta được nên hệ phương trình đã cho trở thành
Cộng từng vế của hai phương trình ta có nên (vô lí) . Phương trình này không có giá trị nào của x và của y thỏa mãn nên hệ phương trình vô nghiệm.
c) Thay vào hệ phương trình đã cho ta được
Nhân cả hai vế của phương trình thứ hai với , ta được nên hệ phương trình đã cho trở thành
Cộng từng vế của hai phương trình ta có nên (vô lí) .
Phương trình này không có giá trị nào của x và của y thỏa mãn nên hệ phương trình vô nghiệm.
Bài 1.9
Dùng MTCT thích hợp để tìm nghiệm của các hệ phương trình sau:
Lời giải:
Bấm máy tính ta được kết quả
Vậy nghiệm của hệ phương trình là
Bấm máy tính, màn hình hiển thị “Infinite Sol”. Vậy hệ phương trình có vô số nghiệm.
Bấm máy tính ta được kết quả
Vậy nghiệm của hệ phương trình là
Bấm máy tính ta được kết quả
Vậy nghiệm của hệ phương trình là
Cảm ơn bạn đã theo dõi bài viết Toán 9 Bài 2: Giải hệ hai phương trình bậc nhất hai ẩn Giải Toán 9 Kết nối tri thức tập 1 trang 11, 12, 13, 14, 15, 16 của Neu-edutop.edu.vn nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.