Neu-edutop.edu.vn mời quý thầy cô cùng tham khảo tài liệu Giải bài tập SGK Toán 9 Tập 2 trang 49, 50 để xem gợi ý giải các bài tập của Bài 5: Công thức nghiệm thu gọn thuộc chương 4 Đại số 9.
Tài liệu được biên soạn với nội dung bám sát chương trình sách giáo khoa trang 49, 50 Toán lớp 9 tập 2. Qua đó, các em sẽ biết cách giải toàn bộ các bài tập của bài 5 Chương 4 trong sách giáo khoa Toán 9 Tập 2. Chúc các bạn học tốt.
Lý thuyết Công thức nghiệm thu gọn
1. Công thức nghiệm thu gọn
Đối với phương trình
+ Nếu thì phương trình có hai nghiệm phân biệt:
+ Nếu thì phương trình có nghiệm kép
+ Nếu thì phương trình vô nghiệm.
2. Chú ý
– Khi a > 0 và phương trình vô nghiệm thì biểu thức
với mọi giá trị của x.
– Nếu phương trình có a < 0 thì nên đổi dấu hai vế của phương trình để có a > 0, khi đó dể giải hơn.
– Đối với phương trình bậc hai khuyết nên dùng phép giải trực tiếp sẽ nhanh hơn.
Giải bài tập toán 9 trang 49 tập 2
Bài 17 (trang 49 SGK Toán 9 Tập 2)
Xác định a, b’, c rồi dùng công thức nghiệm thu gọn giải các phương trình:
a) 4x2 + 4x + 1 = 0 ;
b) 13852x2 – 14x + 1 = 0;
c) 5x2 – 6x + 1 = 0;
d) -3x2 + 4√6.x + 4 = 0.
a) Phương trình bậc hai 4x2 + 4x + 1 = 0
Có a = 4; b’ = 2; c = 1; Δ’ = (b’)2 – ac = 22 – 4.1 = 0
Phương trình có nghiệm kép là:
b) Phương trình 13852x2 – 14x + 1 = 0
Có a = 13852; b’ = -7; c = 1; Δ’ = (b’)2 – ac = (-7)2 – 13852.1 = -13803 < 0
Vậy phương trình vô nghiệm.
c) Phương trình bậc hai 5x2 – 6x + 1 = 0
Có: a = 5; b’ = -3; c = 1.; Δ’ = (b’)2 – ac = (-3)2 – 5.1 = 4 > 0
Phương trình có hai nghiệm phân biệt:
Ta có:
Suy ra
Do đó phương trình có hai nghiệm phân biệt:
Bài 18 (trang 49 SGK Toán 9 Tập 2)
Đưa các phương trình sau về dạng ax2 + 2b’x + c = 0 và giải chúng. Sau đó, dùng bảng số hoặc máy tính để viết gần đúng nghiệm tìm được (làm tròn kết quả đến chữ số thập phân thứ hai):
a) 3x2 – 2x = x2 + 3;
b) (2x – √2)2 – 1 = (x + 1)(x – 1);
c) 3x2 + 3 = 2(x + 1);
d) 0,5x(x + 1) = (x – 1)2.
a) 3x2 – 2x = x2 + 3
⇔ 3x2 – 2x – x2 – 3 = 0
⇔ 2x2 – 2x – 3 = 0 (*)
Có a = 2; b’ = -1; c = -3; Δ’ = b’2 – ac = (-1)2 – 2.(-3) = 7 > 0
Phương trình (*) có hai nghiệm phân biệt:
b) (2x – √2)2 – 1 = (x + 1)(x – 1);
⇔ 4x2 – 2.2x.√2 + 2 – 1 = x2 – 1
⇔ 4x2 – 2.2√2.x + 2 – 1 – x2 + 1 = 0
⇔ 3x2 – 2.2√2.x + 2 = 0
Có: a = 3; b’ = -2√2; c = 2; Δ’ = b’2 – ac = (-2√2)2 – 3.2 = 2 > 0
Vì Δ’ > 0 nên phương trình có hai nghiệm phân biệt là:
c) 3x2 + 3 = 2(x + 1)
⇔ 3x2 + 3 = 2x + 2
⇔ 3x2 + 3 – 2x – 2 = 0
⇔ 3x2 – 2x + 1 = 0
Phương trình có a = 3; b’ = -1; c = 1; Δ’ = b’2 – ac = (-1)2 – 3.1 = -2 < 0
Vậy phương trình vô nghiệm.
d) 0,5x(x + 1) = (x – 1)2
⇔ 0,5x2 + 0,5x = x2 – 2x + 1
⇔ x2 – 2x + 1 – 0,5x2 – 0,5x = 0
⇔ 0,5x2 – 2,5x + 1 = 0
⇔ x2 – 5x + 2 = 0
Suy ra a = 1; b’ = – 2,5; c = 2
Do đó phương trình có hai nghiệm phân biệt:
x2 ∼ 0.44
Bài 19 (trang 49 SGK Toán 9 Tập 2)
Đố. Đố em biết vì sao khi a > 0 và phương trình ax2 + bx + c = 0 vô nghiệm thì ax2 + bx + c > 0 với mọi giá trị của x?
Khi a > 0 và phương trình vô nghiệm thì
Do đó:
Lại có:
Vì với mọi
, mọi a>0.
Lại có (cmt)
Vì tổng của số không âm và số dương là một số dương do đó
với mọi x.
Hay với mọi x.
Giải bài tập toán 9 trang 49 tập 2: Luyện tập
Bài 20 (trang 49 SGK Toán 9 Tập 2)
Giải các phương trình:
a) 25x2 – 16 = 0;
b) 2x2 + 3 = 0;
c) 4,2x2 + 5,46x = 0;
d) 4x2 – 2√3.x = 1 – √3.
a) Ta có:
b)
Ta có: với mọi x suy ra
với mọi x.
Mà VP=0. Do đó phương trình đã cho vô nghiệm.
Ta có:
Vậy phương trình có hai nghiệm x=0;x=-1,3
Ta có:
Có
Suy ra
Do đó phương trình có hai nghiệm phân biệt:
Bài 21 (trang 49 SGK Toán 9 Tập 2)
Giải vài phương trình của An Khô-va-ri-zmi (xem Toán 7, Tập 2, tr.26):
a) x2 = 12x + 288
a) x2 = 12x + 288
⇔ x2 – 12x – 288 = 0
Có a = 1; b’ = -6; c = -288; Δ’ = b’2 – ac = (-6)2 – 1.(-288) = 324 > 0
Phương trình có hai nghiệm:
Vậy phương trình có hai nghiệm x1 = 24 và x2 = -12.
⇔ x2 + 7x = 228
⇔ x2 + 7x – 228 = 0
Có a = 1; b = 7; c = -228; Δ = b2 – 4ac = 72 – 4.1.(-228) = 961 > 0
Phương trình có hai nghiệm:
Vậy phương trình có hai nghiệm x1 = 12 và x2 = -19.
Bài 22 (trang 49 SGK Toán 9 Tập 2)
Không giải phương trình, hãy cho biết mỗi phương trình sau có bao nhiêu nghiệm?
a) Ta có: a=15; , b=4; c=-2005
⇒ phương trình đã cho có hai nghiệm phân biệt.
Ta có:
⇒ phương trình đã cho có hai nghiệm phân biệt.
Bài 23 (trang 49 SGK Toán 9 Tập 2)
Rada của một máy bay trực thăng theo dõi chuyển động của ôtô trong 10 phút, phát hiện rằng vận tốc v của ôtô thay đổi phụ thuộc vào thời gian bởi công thức:
v = 3t2 -30t + 135
(t tính bằng phút, v tính bằng km/h)
a) Tính vận tốc của ôtô khi t = 5 phút.
b) Tính giá trị của t khi vận tốc ôtô bằng 120km/h (làm tròn kết quả đến chữ số thập phân thứ hai).
a) Tại t = 5, ta có: v = 3.52 – 30.5 + 135 = 60 (km/h)
b) Khi v = 120 km/h
⇔ 3t2 – 30t + 135 = 120
⇔ 3t2 – 30t + 15 = 0
Có a = 3; b’ = -15; c = 15; Δ’ = b’2 – ac = (-15)2 – 3.15 = 180
Phương trình có hai nghiệm phân biệt
Vì rada quan sát chuyển động của ô tô trong 10 phút nên t1 và t2 đều thỏa mãn.
Vậy tại t = 9,47 phút hoặc t = 0,53 phút thì vận tốc ô tô bằng 120km/h.
Bài 24 (trang 49 SGK Toán 9 Tập 2)
Cho phương trình (ẩn x) x2 – 2(m – 1)x + m2 = 0.
a) Tính Δ’.
b) Với giá trị nào của m thì phương trình có hai nghiệm phân biệt? Có nghiệm kép? Vô nghiệm.
a) Phương trình x2 – 2(m – 1)x + m2 = 0 (1)
Có a = 1; b’ = -(m – 1); c = m2
⇒ Δ’ = b’2 – ac = (1 – m)2 – 1.m2 = 1 – 2m + m2 – m2 = 1 – 2m.
b) Phương trình (1):
+ Vô nghiệm ⇔ Δ’ < 0 ⇔ 1 – 2m < 0 ⇔ 2m > 1 ⇔ m >
+ Có nghiệm kép ⇔ Δ’ = 0 ⇔ 1 – 2m = 0 ⇔ m =
+ Có hai nghiệm phân biệt ⇔ Δ’ > 0 ⇔ 1 – 2m > 0 ⇔ 2m < 1 ⇔ m <
Vậy: Phương trình (1) có hai nghiệm phân biệt khi m < ; có nghiệm kép khi m =
và vô nghiệm khi m >
Cảm ơn bạn đã theo dõi bài viết Giải Toán 9 Bài 5: Công thức nghiệm thu gọn Giải SGK Toán 9 Tập 2 (trang 49, 50) của Neu-edutop.edu.vn nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.