CÁC DẠNG TOÁN NÂNG CAO LỚP 7
DẠNG 1: DÃY SỐ MÀ CÁC SỐ HẠNG CÁCH ĐỀU.
Bài 1: Tính B = 1 + 2 + 3 + … + 98 + 99
Lời giải:
Cách 1:
B = 1 + (2 + 3 + 4 + … + 98 + 99).
Ta thấy tổng trong ngoặc gồm 98 số hạng, nếu chia thành các cặp ta có 49 cặp nên tổng đó là:
(2 + 99) + (3 + 98) + … + (51 + 50) = 49.101 = 4949
Khi đó B = 1 + 4949 = 4950
Lời bình: Tổng B gồm 99 số hạng, nếu ta chia các số hạng đó thành cặp (mỗi cặp có 2 số hạng thì được 49 cặp và dư 1 số hạng, cặp thứ 49 thì gồm 2 số hạng nào? Số hạng dư là bao nhiêu?), đến đây học sinh sẽ bị vướng mắc.
Ta có thể tính tổng B theo cách khác như sau:
Cách 2:
Bài 2: Tính C = 1 + 3 + 5 + … + 997 + 999
Lời giải:
Cách 1:
Từ 1 đến 1000 có 500 số chẵn và 500 số lẻ nên tổng trên có 500 số lẻ. Áp dụng các bài trên ta có C = (1 + 999) + (3 + 997) + … + (499 + 501) = 1000.250 = 250.000 (Tổng trên có 250 cặp số)
Cách 2: Ta thấy:
Quan sát vế phải, thừa số thứ 2 theo thứ tự từ trên xuống dưới ta có thể xác định được số các số hạng của dãy số C là 500 số hạng.
Áp dụng cách 2 của bài trên ta có:
Bài 3. Tính D = 10 + 12 + 14 + … + 994 + 996 + 998
Nhận xét: Các số hạng của tổng D đều là các số chẵn, áp dụng cách làm của bài tập 3 để tìm số các số hạng của tổng D như sau:
Ta thấy:
Tương tự bài trên: từ 4 đến 498 có 495 số nên ta có số các số hạng của D là 495, mặt khác ta lại thấy: hay
số các số hạng = (số hạng đầu – số hạng cuối) : khoảng cách rồi cộng thêm 1
Khi đó ta có:
Thực chất
Qua các ví dụ trên, ta rút ra một cách tổng quát như sau: Cho dãy số cách đều u1, u2, u3, … un (*), khoảng cách giữa hai số hạng liên tiếp của dãy là d,
Khi đó số các số hạng của dãy (*) là:
Tổng các số hạng của dãy (*) là:
Đặc biệt từ công thức (1) ta có thể tính được số hạng thứ n của dãy (*) là: un = u1 + (n – 1)d
Hoặc khi u1 = d = 1 thì
DẠNG 2: DÃY SỐ MÀ CÁC SỐ HẠNG KHÔNG CÁCH ĐỀU.
Bài 1. Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)
Lời giải:
Cách 1:
Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó:
Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a1 = 1.2.3 – 0.1.2
a2 = 2.3 → 3a2 = 2.3.3 → 3a2 = 2.3.4 – 1.2.3
a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 – 2.3.4
…………………..
an-1 = (n – 1)n → 3an-1 =3(n – 1)n → 3an-1 = (n – 1)n(n + 1) – (n – 2)(n – 1)n
an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) – (n – 1)n(n + 1)
Cộng từng vế của các đẳng thức trên ta có:
3(a1 + a2 + … + an) = n(n + 1)(n + 2)
Cách 2: Ta có
3A = 1.2.3 + 2.3.3 + … + n(n + 1).3 = 1.2.(3 – 0) + 2.3.(3 – 1) + … + n(n + 1)[(n – 2) – (n – 1)] = 1.2.3 – 1.2.0 + 2.3.3 – 1.2.3 + … + n(n + 1)(n + 2) – (n – 1)n(n + 1) = n(n + 1)(n + 2)
* Tổng quát hoá ta có:
k(k + 1)(k + 2) – (k – 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …
Ta dễ dàng chứng minh công thức trên như sau:
k(k + 1)(k + 2) – (k – 1)k(k + 1) = k(k + 1)[(k + 2) – (k – 1)] = 3k(k + 1)
Download tài liệu để xem chi tiết.
Cảm ơn bạn đã theo dõi bài viết Các dạng toán nâng cao lớp 7 Đề toán lớp 7 của Neu-edutop.edu.vn nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.